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Abstract—This paper presents an extensive electrical character- a need to know the LF noise performance of preproduction
ization of Si/SiGe/Si heterojunction bipolar transistors (HBT'S) devices and their impact on phase noise. This paper deals
grown by molecular beam epitaxy (MBE). These devices are \yiih the LF noise properties of recently processed devices

designed for microwave and millimeter-wave applications since - ) L .
they present a maximum oscillation frequency in the 40-GHz and investigates how the LF noise impacts on the phase-noise

range. The processing technology, featuring a high-quality oxide performaﬁce of |PW additive phase-noise amplifiers and low
passivation, results in ideal Gummel plots and an input noise cor- phase-noise oscillators.
ner frequency of 250 Hz at lowest. A dielectric resonator oscillator The paper is organized as follows. Section Il presents a brief
(DRO) at 4.7 GHz has, therefore, been realized. The measured g\ apyiew on the HBT processing technology involved in this
phase-noise level of this oscillator is below-135 dBc/Hz at 10- . . . .
kHz offset frequency, which is at least 10 dB better than the best work. Device dc_ characterlstlcs_ are reported_ and discussed in
FET or HBT state-of-the-art DRO's. Section lll. Section IV deals with the LF noise performance

. . . . as a function of bias and geometry. Section V addresses

Index Terms—Dielectric resonator oscillators, Ge-Si alloys, 9 y

heterojunction bipolar transistors, low-frequency noise, micro- both mprovyave performa_nce an.d phase-noise data, while the
wave oscillators, noise} / f noise, phase noise, SiGe alloys, silicon. conclusion is presented in Section VI.

|. INTRODUCTION Il. DEVICE FABRICATION

iGe MICROWAVE heterojuction bipolar transistor (HBT) Device fabrication starts with 4-in 1.5cm - substrates.
ipolar/BICMOS technology has a great potential in thafter an RCA clean, the wafers are loaded into the MBE sys-
wireless communication market because it can provide battm where the complete HBT layer structure is grown without
low-cost technology and, in several areas, improved perfanterruption. The sensitive base—emitter (BE) or base—collector
mance over the IlI-V competitive technologies. The lowBC) interfaces are, therefore, never exposed to air or the other
frequency (LF) noise and relative additive phase noise process environments, unlike in the cases of an epitaxially
oscillator phase noise is one of the areas where SiGe devigeswn base or a polysilicon emitter. Growth starts after a 900
outperform IlI-V devices, as will be shown in this paper. °C flashoff with the 300-nm-thick collector layer Sb-doped 4
LF noise is a crucial parameter for very broad-band-range 10'¢ cm=2. The 47-nm-thick SiGe base doped»5 10'°
analog circuits and for the spectral purity of nonlinear mem=2 is grown by co-evaporation, and contains 24%—30%
crowave functions where the LF noise impacts directly oof germanium. Undoped spacer layers on both the collector
the nonlinear microwave function performance (e.g., oscillatand emitter side allow a limited diffusion of the boron within
A/D converter, low-phase distortion amplifier) [1]. Recentlythe base during subsequent processing. The emitter is 100-
many works [2]-[5] have been focused on LF noise perfonm-thick doped 1-2x 10 cm~2 with Sb followed by a
mance of SiGe HBT's since Vempadt al. [2] have reported 80-nm-thick - emitter contact layer.
an excess noise corner frequency (i.e., the frequency wher®evice fabrication starts with the deposition of a 300-nm
excess noise and white noise have the same magnitude)C&D masking oxide. Optical lithography defines the emitter
low as 500 Hz on ultrahigh vacuum/chemical vapor depositetieas. The oxide and the top" Hayer around the emitter
(UHV/CVD) HBT's. This outperforms the best results obare dry etched. The SiGe remains covered by thesiticon
tained in Ill-V HBT’s [6]. Planaet al. [3] have also reported layer. An oxide spacer is then formed on the emitter mesa
an excess noise corner frequency in the 10-kHz range farorder to keep a safety distance of the following external
molecular beam epitaxy (MBE) research-type SiGe devicdsase BF2 implantation to thetnemitter. Next, the collector
The SiGe technology is now more developed and there ngesa is dry etched, thereby removing the SiGe layer outside
the device area. Note that this mesa is again very shallow, as
Manuscript received May 9, 1997; revised December 30, 1997. it is not necessary to etch down to thé substrate because
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Fig. 1. Collector current—voltage characteristic for &«8L.6 pum x 9 um Vbe (V)
SiGe HBT (#B).
Fig. 3. Forward Gummel plots for4# and #3 SiGe HBT samples.
100 { —#B  —#A Vee=15V
- an absence of any leakage current. The ideality factor of the
E, , — collector current component and of the base current component
Z 10° 1 are close ton = 1.00. This confirms the absence of any
g parasitic barrier due to the out diffusion of the base doping [8].
B Furthermore, no recombination at the extrinsic base region or
2 10 - emitter periphery are involved. This behavior results from the
g excellent quality of the passivation oxide.
o 2t substrate Coll ‘ The evaluation of the series emitter and collector resistances
. o ofector from dc measurements give, respectivety, = 2.6 € and
, ' 1 ' ‘ re = 2.4 Q for the #B transistor. The observed low value
- - 2 .
10 10 1 10 10 of the base resistande,, < 15 €2 for #B), evaluated by LF
Ic(mA) noise measurements agrees with the high base doping level.
Fig. 2. Current gain versus collector currentidt. = 1.5 V. The inset The attractive dc propernes of thes_e MBE-grown SiGe HBT
shows a cross section view of al#SiGe HBT sample. should also result in excellent LF noise performance, which is

the point of interest of Section IV.
unavoidable boron diffusion in the base will not reach emitter

or collector and form parasitic barriers. Finally, a @8 CVD IV. LF NOISE
oxide is deposited and contact holes are opened. After a PtSi
salicide process, a gm-thick TiW/Au metallization is formed. 5 nNoise Theory and Measurement Method

The emitter fingers are 1.am x 9 um and the distance , h L ¢ . :
between adjacent gold lines is 2.n. Noise characterization of HBT’s in a common emitter con-

Two different samples of either two & or eight (#3) figuration has been carried out at room temperature, between

fingers were used. Devices are bounded into 100-mil ceranié 1z @nd 10 kHz, through output noise measurements for

packages. The inset in Fig. 2 shows the cross-sectional vidgrious input resistive terminations, as previously described
of a #4 sample in [9]. In this approach, an appropriate humerical extraction

technique [10] must be used to obtain the spectral intensity
S.(f) of the input referred noise—currerit: = +4,) and
o . hoise—voltaggxz = ¢, ) generators in addition to their cross
A complete dc characterization has been performed inclugs,relation (zr = eni). According to Kleinpenning [11]
ing Ic = f(Vce)i, forward Gummel plots, and dc current gairyng van der Ziel [12], the input referred noise current, the

versus collector current. Experiments have been carried outigpy referred noise voltage, and the cross-correlation spectral
a set of ten # and #3 devices. We have plotted in Fig. 1 thejensities can be written as

[ll. STATIC MEASUREMENTS

output characteristicéc = f(Vce)p, for a #8 sample. The S

offset voltage is near 0 V due to the absence of a conduction Sin = Sieb + % (1)
band offset as in GaAlAs HBT's, and due to a large inverse S

current gain [7]. The slope of the characteristics in the normal Sen =4kTT) + rfSieb + ‘e; () 4 1)

regime indicates no Early effect due to the high base doping p

level. The devices exhibit a constant current gain of about +Ib25r1lfg, —l—IeQS&e/ef (2

150 over about three decades of collector current (see Fig. Zé)‘
which indicates a good device quality with respect to surfa& d ,

recombinations. The forward Gummel plots for sampleand Senin: = 7 Siepy + Ty T Tx Sice ©)
#B (see Fig. 3) indicates an ideal behavior and, furthermore, B2
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Fig. 5. Input current noise spectral density at 1 Hz versus base current for
Fig. 4. Input current noise spectral density fot #nd #B HBT samples at a #B sample biased at.. = 1 V.
Ib =34 pA and V.. = 1V from 25 Hz to 10 kHz.

10-14

where r; = 1, + ree (r}, represents the spreading base 5 ’

resistance)r, represents the dynamic resistance of the emit- 5 105

ter—base heterojunction defined by = n;; - Ut/Ib, and 3 &

is the dc current gain. Finally$;;, and Si.. are the short- a2 51046*

circuited spectral intensities at the emitter—base heterojunction %’ > #A

and at the emitter—collector terminals of the intrinsic device. ~ “ &

In our case (as will be later observed), the intrinsic excess 3 %10'“7

noise sources are mostly @f f type and theS;.;, and Sic. Eg #B

can be expressed as o 1011
Sieb = 2q1b + Silfi,f (4) § 109 . ] ‘
Siee =2qIc+ S/ (5) & 10 102 10° 10¢

FREQUENCY (Hz)

where 2¢Ib and 2¢/ ¢ stand for the shot noise sources, anch_ 6 Inout volt ) ral densitv fof #nd 43 HET os at
SY7 and 5%/ stand for the flicker r110ise spelctral intensitieS, — 54 1A and 1o = 1 flom 25 He to 10 kHz. sampies a
at intrinsic device terminals. FinaII)S,,Zb’f and 53/ represent

the 1/ f resistance fluctuation spectral densities in the extri€. Input Noise—Voltage Generator

sic resistive regions of the device (access base and emitte{ye will now investigate the input noise—voltage data. The

resistances). Senspectra observed ondtand #3 (16 = 34 pA) samples are
) o displayed in Fig. 6. It shows that4#samples exhibit greater
B. Input Noise—Current Generator Characterization noise levels than B ones. The latter device features both a

According to (1), theS;.;, predominates oveS;.. for high |0W€f5ileé,f (see Fig. 6) and a lower base resistange which
gain devices such as those under investigation. In Fig. 4, thepacts onSi, [see (4)] andr, and, subsequently, ofi.,
input S;, = Siep, NOISe—current spectra are displayed fot # as expected from (2). Usin@i{,f provided by noise—current
and #3 devices at a constant base currdiit = 34 ©A measurements and (2), we can achieve a rough fit pffrom
(Ic ~ 5mA) and V.. = 1 V. The spectra indicate 4/f static parameters only while neglectifigh.’, %/,, ands/ .
behavior below 250 Hz. The variation of the/f noise |t turns out that the flicker noisé.,/ produced at the emitter
amplitude between # and #3 devices at a given curréntpase junction is the predominant excess noise source in our
is approximatelyl/Ac (Ac is the global emitter area) which gevices. However, the other noise sources should be taken into
proves unlikely an extrinsic surface origin of this noise.  account if a better fit ofS.,, is needed. Work is in progress

In order to further clarify the physical origin of this noiseq jgentify their physical origins.
extra 1l/f noise measurements have been performed versus
base current ranging from 5 to 20QA at a constantV,. ,
voltage (1 V), and are reported in Fig. 5. The inpytf D- Performance Evaluation
noise—current variation scales &¢, and thus, indicates that From the spectra displayed in Fig. 7, we have extracted the
the 1/f noise source is homogeneously distributed over tlweltage(f.,) and current f.;) excess noise corner frequencies
emitter region according to the analysis of Kleinpennitg for the #3 sample biased atb = 3 pA (the minimum cur-
al. [11] for conventional silicon devices. This proves thatent needed for artf,,..—see the following section—beyond
the oxide layer over the extrinsic region acts as a vefy GHz). The obtained values ¢f; = 1 kHz and f., = 250
efficient passivation and confirms that the extrinsic regioméz outperform results measured on IlI-V HBT’s [6].
do not significantly contribute to the LF noise compared with Finally, a comparison of these current LF noise data
previous unpassivated HBT's [3]. with respect to other bipolar technology can be performed
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Fig. 7. Input current and voltage noise spectral density faBaHBT sample Fig. 8. Microwave performance ofBf sample versus collector current.
atIb = 3 pAand V.. = 1 V from 25 Hz to 10 kHz.
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through al/f coefficient K derived from the input referred HBT GaAlAs/GaAs
noise—current generator [13]. This coefficient can be defined
asK = (f- 57 - Ae/I?).

For the device #, K can be extracted from Fig. 4, yielding
a value of 8- 1072 um?. Different measurements [14] on
similar silicon SiGe HBT’s have shown values as low as 2.6
. 10719 ym?2. Other authors have reported -210~° pm?
on UHV/CVD-grown SiGe HBT's [5] and 4 107°9-20 -
10~? pm? for Si bipolar junction transistors (BJT's) [13],
[15]. TheseK-values of silicon-based bipolar transistor are
more than an order of magnitude lower than the best-reported
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V. PHASE-NOISE PROPERTIES Fig. 9. Measured residual phase noise at 10 GHz fBr %iGe HBT’s

. . . . . . (e = 26.1 mA and V.. = 0.5 V) and other microwave devices
The LF noise of an active device, which is converted int@aalas/GaAs HBT and GaAlAs/GalnAs PHEMT's).

phase noise by the devices nonlinear elements, heavily impacts
on the microwave close to carrier performance. Three different
noise figures can be considered to evaluate the suitability tgfenhance the input noise—voltage influence over the current
an active device for low phase-noise applications: noise since the former one has the lowest corner frequency.
1) equivalent input LF noise; This technique has already been used successfully to improve
2) microwave residual phase noise near the carrier for #re phase noise of other HBT oscillators, as described in
open loop configured device (i.e., the added phase no[¢8] and [19]. In Fig. 9, the measured residual phase-noise
when the device is operated as a microwave amplifiegpectra are shown, both for theB#isample and other more
3) near-carrier oscillator microwave phase noise. conventional microwave devices, for comparison purposes. In
In Section IV, we have already investigated the LF noid@ct, the SiGe HBT data is not far from the test-set noise floor
performance. We will now examine the other two noise figureds is observed from the noisy curve which is typical of the
First, the S-parameters were measured from 100 MHz ttmit of the cross-correlation technique. However, the residual
18 GHz. After an appropriate package deembedding, the cutpffase noise at 10-kHz offset can be evaluated to be less than
frequency f¢t and the maximum frequency oscillatiofy,.,x ~—160 dB-rad/Hz. This outperforms the best lll-V HBT's,
have been extracted versus bias as reported in Fig. 8 for #igh electron-mobility transistor (HEMT), and pseudomorphic
sample). The obtained maximum values of 42 GHz.x) high electron-mobility transistor (PHEMT) data obtained in
and 25 GHz( ft) at Ic = 20 mA shows that these devices ardéhe same conditions in our laboratory.
suitable for microwave and millimeter-wave oscillators. The current concern is to determine if such an attractive
Through appropriate cross-correlation phase-noise mealditive phase-noise performance is corroborated by low os-
surement techniques [17], residual phase-noise measuremeifiator phase noise. A 4-GHz parallel feedback oscillator has
have been performed at 10 GHz and low input powdeen built using a resonator with a moderate loa@efhctor
(Pn <0 dBm). The devices are embedded in a coaxial test 160. The control of the loop gain and phase shift have
fixture and placed between two 5bisolators. Additionally, been achieved through a variable attenuator and a variable
the device input sees a short circuit at low frequencies in ordength line, respectively. The phase-noise test set is a delay



VAN HAAREN et al: LOW-FREQUENCY NOISE PROPERTIES OF SiGe HBT's AND APPLICATION TO ULTRA-LOW PHASE-NOISE OSCILLATORS 651

noise measurements<160 dB- rad/Hz at 10-kHz offset)
confirm the very attractive capabilities of SiGe HBT's for low
phase-noise applications. Finally, we have realized-band

Foed GHz microwave oscillator with a phase-noise performance better
Q=160 than —135 dBc/Hz at 10-kHz offset frequency. This is one
of the highest spectral purities ever observed on a microwave
solid-state oscillator. Since a maximum oscillation frequency
beyond the 40-GHz range has already been demonstrated on
these devices, they will be able to provide ultra-low phase-
noise millimeter-wave sources in the future.

w
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